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The combined influence of a strongly interacting cosolvent (NaCl) and a weakly interacting cosolvent
(sucrose) on the heat-induced gelation of bovine serum albumin (BSA) was studied. The dynamic
shear rheology of 4 wt % BSA solutions containing 0 or 20 wt % sucrose and 0—200 mM NaCl was
monitored as they were heated from 30 to 90 °C at 1.5 °C min~?, held at 90 °C for 120 min, and then
cooled back to 30 °C at —1.5 °C min~1. The turbidity of the same solutions was monitored as they
were heated from 30 to 95 °C at 1.5 °C min~! or held isothermally at 90 °C for 10 min. NaCl had a
similar effect on BSA solutions that contained 0 or 20 wt % sucrose, with the gelation temperature
decreasing and the final gel strength increasing with increasing salt concentration and the greatest
changes occurring between 25 and 100 mM NaCl. Nevertheless, the presence of sucrose did lead
to an increase in the gelation temperature and final gel strength and a decrease in the final gel turbidity.
The impact of NaCl on gel characteristics was attributed primarily to its ability to screen electrostatic
interactions between charged protein surfaces, whereas the impact of sucrose was attributed mainly
to its ability to increase protein thermal stability and strengthen the attractive forces between proteins
through a preferential interaction mechanism.
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INTRODUCTION of the container (5). The structural organization of the proteins
within the network, and hence the bulk physicochemical
properties of the gel, are governed by the physicochemical
events that occur during gelatio{12). The appearance,
rheology, and water-holding capacity of gels therefore depend
on how the molecular conformation of the proteins, the nature
of the attractive and repulsive interactions between the proteins,

Knowledge of the physicochemical basis of heat-induced
protein gelation is important in the food industry because many
of the sensory and textural properties of foods are a result of
the structures formed during protein gelatidr). (The rational
design and production of foods with desirable quality attributes

therefore depends on an improved understanding of the phys-and the kinetics of the proteirprotein, protein-aggregate, and

icochemical factors that lead to the creation of specific gel = i . h duri Lf .
structures. Despite being the subject of a large number of s'[udiesag916197"’)"[e aggregate interactions change during gel formation

carried out over many years, the precise mechanism of heat-(13
induced protein gelation is still not clearly understo@. ( The proteins in most food systems are dispersed in an aqueous
It has been proposed that heat-induced gelation of globularmed'um that contains a wide variety of different water-soluble
proteins proceeds via a number of steps (When a protein component;, e.g., salts_, sugars, a_llcohols, surfactants, and
solution is heated above a critical temperature, usually referred Polysaccharidesl, 19). Itis therefore important to understand
to as the thermal denaturation temperatufg), the proteins how these components influence the molecular and functional
go through a conformational change that exposes amino acidsProperties of globular proteins during gelation. In previous
normally located in the protein interior, e.g., those with nonpolar studies, we have examined the influence of various types of
or sulfhydryl side chains4). The exposure of these “reactive” low molecular mass neutral cosolvents (such as sucrose, sorbitol,
amino acids increases the attractive hydrophobic forces betweerind glycerol) on the thermal denaturation and gelation of
proteins and facilitates the formation of inter-protein disulfide globular proteinsZ0, 21). These studies have shown that neutral
bonds (3). Under appropriate solution conditions (pH and ionic cosolvents influence protein gelation by a number of different
strength), protein molecules associate to form aggregates, whichmechanisms, including altering the thermal stability of the
can then associate with other aggregates to form a three-protein, altering the kinetics of protetprotein encounters, and
dimensional protein network that extends throughout the volume increasing the strength of protein—protein interactions. In our
previous experiments, we examined the influence of cosolvent
* Corresponding author. Tel.: 413-545-1019. Fax: 413-545-1262. E- concentration at a fixed salt concentration. Salts are known to
mail: mcclements@foodsci.umass.edu. have a major impact on the gelation mechanism and on the final
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properties of globular protein gelg,(13,22—25). The objective 6000 Temperature 100
of the current study was thus to examine the combined influence 5000 - 2000y T 90
of a strongly interacting cosolvent (NaCl) and a weakly T8 o
interacting cosolvent (sucrose) on the physicochemical properties 4000 - 170 3
of heat-induced gels formed from bovine serum albumin at & 1% R
neutral pH, to obtain a better understanding of the influence of & **% 1 ig g
solution composition on globular protein gelation. In particular,  © 2000 - La =
we wanted to determine if gels with specific properties could Lo 2
be obtained by controlling the levels of sugar and salt present 1000 1 : 110
during heating. 0 R - : . 0

0 2000 4000 6000 8000 10000 12000
EXPERIMENTAL PROCEDURES Time (s)

Figure 1. Influence of NaCl in the absence of sucrose on the complex
shear modulus (G*) of 4 wt % BSA solutions during a heating—cooling
cycle measured using dynamic shear rheometry. Each line represents a
single run. Typically, the standard deviation of repeated runs was better

Materials. Analytical grade NaCl, sucrose>09 wt % pure) and
bovine serum albumin (A-7906, Lot 21K1215) were purchased from
the Sigma Chemical Co. (St. Louis, MO). As stated by the manufacturer,
the BSA was obtained using initial fractionation by heat shock (fraction
V) and low molecular mass impurities were removed using charcoal than 5% of G*.
and extensive dialysis. The BSA content of the lyophilized powder

was determined by electrophoresis to be 98% (the remainder being 6000 Temperature ' ;80
mostly globulins), the decrease in mass of the protein powder upon 5000 —
drying was 1.1% and the nitrogen content of the powder was 15.8%. 70 2
Distilled and deionized water was used for the preparation of all buffer __ 4900 60 S
solutions. The pH of the BSA solutions used in this study were & 3000 50 &
measured using a pH meter to be #0.1 (pH Meter 320, Corning ) 20% Sucr. 0 %
Inc., Corning, NY). 2000 30 2
Rheology MeasurementsThe influence of NaCl on the dynamic 1000 | 20
viscoelastic properties of 4 wt % BSA solutions containing 0 and 20 10
wt % sucrose was measured using a constant stress rheometer (Bohlin R ; 0
CS10, Bohlin Instruments, Cranbury, NJ). The rheometer applied an 0 3000 6000 9000 12000

oscillating stress of specified frequency to the sample and measured

the resulting strain. The magnitude of the complex shear mod@Gi)s ( . .

and the phase angl@) were calculated from the resulting stress Figure 2. Combined effect of NaCI.and sucrose on the compllex shear

strain relationship. A concentric cylinder (C25) measurement system Modulus (G¥) of 4 wt % BSA solutions during a heating—cooling cycle

was used, which had a rotating inner cylinder of 25-mm diameter and measured using dynamic shear rheometry. Each line represents a single

a static outer cylinder of 27.5-mm diameter. Measurements were maderun. Typically, the standard deviation of repeated runs was better than

at a frequency of 0.1 Hz and at a maximum strain of 0.001, which was 5% of G*.

within the linear viscoelastic region of the material (as determined by

a strain sweep). previously @2). Measurements were carried out on two or three protein
BSA solutions were placed in the measurement cell of the rheometer solutions prepared at different times from the same BSA powder

and allowed to equilibrate to 3T for 5 min. Solutions were covered  (replicates).

with a thin layer of mineral oil to retard evaporation during the

experiments. The solutions were heated from 30 t¢@Gat 1.5°C RESULTS AND DISCUSSION

min~%, held for 70 min, cooled from 90 to 3W at —1.5°C min™?,

and then held at 30C for 30 min. Measurements were carried out on Rheological Properties of Gels.The shear modulusG¥)

two or three protein solutions prepared at different times from the same and phase angl&) of 4 wt % BSA solutions containing either

BSA powder (replicates). The gelation temperatdig)of the protein 0 or 20 wt % sucrose and different NaCl concentrations~25

solutions was defined as the temperature where the phase angle firsbgg mM) was measured. The time-dependence of the temper-

fell below 45°during heating (21). ature andG* for selected protein solutions heated from 30 to

Turbidity Measurements. An UV—visible spectrometer (Ultrospec g °C. held at 90°C for 70 min, cooled back to 36C, and

3000pro, Amersham-Pharmacia, Uppsala, Sweden) equipped with 3then held at 30C for 30 min are shown ifFigures 1 and 2.
temperature-controlled sample holder was used to measure the chang

in turbidity at 600 nm of 4 wt % BSA solutions containing different RIO gelation was observed during he_atlng for NaCl Concentr.a_
NaCl and sucrose concentrations upon heating. BSA solutions weretlons k_)elow 25 mM NaCl, suggegtlng that thg (_alectrostatlc
poured into 1-cm quartz cuvettes and then covered with a thin layer of "€PUISiVe forces between the proteins were sufficiently strong
mineral oil and a plastic lid to retard evaporation during the experiments. 10 prevent the formation of a gel networkg).

For temperature-scanning measurements, the cuvettes were placed in The influence of NaCl on the evolution @* of the BSA

the sample holder of the spectrometer and allowed to equilibrate to 30 solutions during the heatirgcooling cycle in the absence of
°C for 5 min. The turbidity of the solutions was then recorded as they sucrose is shown iRigure 1. The shear modulus remained close
were heated from 30 to 9% at 1.5°C min ™. For these measurements, o zero when the solutions were heated from 30 to around 70
the excess turbidity was defined as the turbidity measured at a particularocl which indicated that the solutions remained fluid below this
te;gpoe(r:atuée ”?'m:ﬁ the tlurb'd'ty meas“tred at’Gtt: Az(T) t:_’.(T) rotein EEMPerature. Upon further heating, the shear modulus increased
u ). For isothermal measurements, cuvettes containing protein steeply, indicating that the solutions formed gels. During the

solutions at room temperature were placed in the spectrometer sample . . .
holder set at 90C, and the turbidity was recorded over time. For these isothermal holding period at ST the shear modulus continued

measurements, the excess turbidity was defined as the turbidity {0 increase, indicating that gelation was occurring and that gel
measured at a particular time minus the initial turbidityr(t) = (t) formation was not completed, even after holding the protein
— 7(0 s). The excess turbidity was normalized to take into account solutions for 2 h athis elevated temperatur&* increased

differences in the refractive indices of the aqueous solutions as describedduring the cooling period, which may have been caused by

Time (s)
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further incorporation of proteins into the gel network or by 90

strengthening of the bonds between the proteins already trapped 88 1 -0~ 0wt%
within the gel network. The shear modulus of most of the gels 86 1 ~o-20t%
remained relatively constant throughout the final isothermal O 8

holding period at 30°C, which suggested that no further gel 3 821

formation took place. However, the shear modulus of the gels = 801

containing 25 mM NaCl decreased significantly with time during 787

this isothermal holding period, suggesting that they became :i |

weaker. As reported in previous studi@4 (22), the phase angle
of the BSA solutions was high~@5°) and erratic during heating
from 30 to around 70C, rapidly decreased to a relatively low
value (<2°) when the gelation temperature was exceeded angFigure 3._ Influence of‘ NaCl on gelation temperature (Tge) Of 4 Wt %
remained low during further heating and isothermal storage at BSA solutions (pH 7.0) in the absence (0%) and presence (20%) sucrose.

90 °C (data not shown). When the gels were cooled, the phase ) o
angle increased slightly with decreasing temperature, reaching2f€@ from which the cosolvent has to be excluded, which is
a value of around Sat 30 °C, which indicated that the gels ~thermodynamically more favorable.

became slightly less elastic at lower temperatures. The phase The concentration of NaCl in the protein solutions had a major
angle of the gels then remained relatively constant throughoutimpact on the rheological characteristics of the BSA gels. In

the final isothermal holding period at 3@, indicating that no  the absence of sucrose, the gelation temperature decreased by
further gelation occurred. about 7°C when the NaCl concentration was increased from
25 to 200 mM, with the most substantial decrease occurring
between 25 and 50 mM NaCFigure 3). The salt could
holding period (Figure 1). The initial rate of the increase of potentially influence t_he gelation temperature of BSA through
G* with time increased as the salt concentration increased from & _number of mechamsms,_ €.g., by glterlng _the protein den_atur-
ation temperature, proteirprotein interactions, or protein

25 to 200 mM, which can again be attributed to the ability of . S . . . .
the salt to screen the electrostatic repulsion between the proteinaggreganon kinetics20—22). Differential scanning calorimetry

molecules, thereby increasing the fraction of collisions that leads studies have shown that the thermal denaturation temperature

. . . .~ "7 (Tm) of globular proteins increases with increasing NaCl
to aggregation. The influence of the NaCl was fairly similar in concentration 3, 27), which has been attributed to screenin
the presence and absence of sucrose, @itlat the end of the 0 g

90 °C holding period falling from 3.9 to 3.5 to 0.5 kPa at 0 wt of the intramolecular electrostatic repulsive forces in the BSA

. i infm woul X incr
% sucrose and from 3.2 to 2.7 to 0.5 kPa at 20 wt % sucrose asmOIECUIe £8). An increase i, would be expected to increase

; the gelation temperature because the protein needs to unfold
:\rl]:CII\Iam concentration decreased from 200 to 100 to 25mM before it can gel. Studies wijBtlactoglobulin have shown that

this increase is about 2— when the NaCl concentration is
The salt also had a major impact on the gelation kinetics jncreased from 0 to 300 mM18). Salt also screens the
during the cooling period from 90 to 3@ (Figure 1). In the electrostatic repulsion between proteif§)( hence, the fraction
absence of sucrose, the increaseGihduring the cooling of  of collisions leading to protein aggregation and network
gels containing 25 mM NaCl was appreciably higher than in formation should increase with increasing NaCl concentration,
the isothermal holding period at 9C. On the other hand, the  which would be expected to increase the gelation rate. Elec-
increase inG* during the cooling of gels containing 200 MM trostatic repulsive interactions are primarily responsible for
NacCl was fairly similar to that in the isothermal holding period preventing the association of protein molecules, and the effect
at 90°C. In the presence of 20 wt % sucrose, there was a muchof electrostatic screening on protein functionality can be
steeper increase iG* with time upon cooling than in the  characterized in terms of the DebyHliickel screening param-
isothermal holding period at 90C at all salt concentrations  eter (35). Electrostatic screening interactions have been shown
(compareFigures 1and?2). This strong temperature dependence to have a significant impact on the conformation and association
of the shear modulus of protein gels containing high cosolvent of proteins (36,37). The fact that we observed a decrease in
concentrations was also observed in our studies with sucrose gelation temperature with increasing NaCl concentration sug-
sorbitol, and glycerolZ1, 22). This observation suggests that gests that the major impact of the salt was on the strength of
these cosolvents are more effective at increasing the attractionthe protein-protein interactions, by reducing the charge repul-
between protein molecules at low temperatures than at highsion between the negatively charged groups of the protein
temperatures. This hypothesis is supported by experimentalmolecules at pH 7 (37). The presence of NaCl in the aqueous
measurements of the temperature-dependence of the preferentigihase of the solutions would only have increased the solution
interaction coefficients of various cosolvents with globular viscosity slightly, i.e.,<2%, and thus should not have a major
proteins, which demonstrate that there is an appreciable changeémpact on the gelation rate (20).
in the sign and magnitude of the preferential interaction  The dependence of the gelation temperature on NaCl con-
coefficients with temperaturéQ—32). The preferential interac-  centration followed a similar trend in the protein solution
tion coefficient provides quantitative information about the containing 20% sucrose, with the decrease in gelation temper-
preferential accumulation or exclusion of cosolvent molecules ature being about 7C when the NaCl concentration was
at the protein surfacel®). A negative preferential interaction  increased from 25 to 200 mMFi{gure 3). Nevertheless, the
coefficient indicates preferential exclusion of the cosolvent from gelation temperature was about°®& higher in the protein
the protein surface. A positive preferential interaction coefficient solutions containing 20 wt % sucrose than in those containing
indicates preferential accumulation of the cosolvent at the protein 0 wt % sucrose. This phenomenon can be attributed to the ability
surface. Preferentially excluded cosolvents, such as sucrose andf sucrose to increase the thermal denaturation temperature of
NaCl, will favor the aggregated state, due to a reduced surfaceBSA through a preferential interaction effect (19—21).

0 50 100 150 200
NaCl Concentration (mM)

The presence of salt in the protein solutions also had a major
impact on the gelation kinetics during the 9Q isothermal
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Figure 4. Influence of NaCl on final complex shear modulus (G*) of 4 wt Figure 7. Influence of NaCl and sucrose on the aggregation temperature
% BSA solutions (pH 7.0) in the absence (0%) and presence (20%) of (determined from turbidity measurements) of 4 wt % BSA solutions (pH
sucrose. G* was measured at the end of the 30 °C isothermal holding 7.0).
period.
300
300 200 MM 250 0 wt% Sucrose
250 - -~
T 200
£~ 200 < 150
S, 150 1 100 mM >:E‘ 100 20 wt% Sucrose
"o <
<1 100 | 50 »
50 50 mM 0
0 ‘ — 0 50 100 150 200
30 40 50 60 70 80 90 100 NaCl (mM)
Temperature (°C) Figure 8. Influence of NaCl and sucrose on the final normalized turbidity
Figure 5. Influence of NaCl concentration on the normalized turbidity as (measured at 95 °C) of 4 wt % BSA solutions (pH 7.0).
a function of temperature (at 600 nm) for 4 wt % BSA solutions (pH 7.0)
in the absence of sucrose. attributed to protein aggregation. In the absence of sucrose, the
300 turbidity increase with temperature was more extensive and
occurred more rapidly as the salt concentration was increased
250 (Figure 5), which can be attributed to the ability of the salt to
200 | screen electrostatic interactions between the protein molecules
= 0% Sucrose (28, 11). At a constant salt concentration (200 mM NacCl),
E 150 turbidity increase with temperature was greater and occurred
Y more rapidly for 0% sucrose than for 20% sucrose (Figure 6).
100 7 s Srne This effect may be attributed to the ability of sucrose to increase
50 4 ’ the thermal stability of the protein molecules through a
preferential interaction mechanism and to slow protgirotein
(] — = encounters by increasing solution viscosity (21).
30 40 50 60 70 80 90 100 An “aggregation temperatureT{y) was defined as being
Temperature (°C) the temperature where proteins first formed aggregates large
Figure 6. Influence of sucrose on the normalized turbidity as a function enough to scatter light during heating and was determined by
of temperature (at 600 nm) of 4 wt % BSA solutions (pH 7.0, 200 mM finding the temperature where the turbidity first exceeded 0.05.
NaCl). For both 0 and 20 wt % sucrose, the aggregation temperature

decreased when the salt concentration was increased appreciably

The presence of NaCl also had an appreciable impact on thefrom 25 to 50 mM NaCl, but maintained a plateau level between
final rigidity of the gels at the end of the final isothermal holding 50 and 200 mM NaClKigure 7). However,Taqg Was about 2
period at 30°C (Figure 4). The final gel rigidity increased  °C higher in the presence of sucrose than in its absence. These
steeply from 25 to 100 mM NacCl, after which it remained fairly ~trends were therefore fairly similar to those observedTigy
constant, which supports previous studies (10). Sucrose determined from the rheology measuremehtgyre 3), except
caused a slight increase in the final gel strength, which has beerthat the values of,gg were less than those G, because a
attributed to its ability to increase protetprotein interactions certain amount of protein aggregation needs to occur before a
through a preferential interaction mechanism (23). gel network is formed.

Optical Properties of Gels.The temperature-dependence of An indication of the influence of NaCl and sucrose on the
the normalized turbidity (at 600 nm) of 4 wt % BSA solutions appearance of the gels was obtained by plotting the turbidity
containing different NaCl concentrations (5200 mM) and of the gels at the end of the heating process, i.e., at®5

sucrose concentrations (0 and 20 wt %) was measkigdres (Figure 8). The final turbidity of the gels increases with NaCl
5 and6). There was little change in the turbidity of the solutions concentration in both the presence and absence of salt. This
when the temperature was increased from 30 t6®5which can be attributed to the change from a filamentous gel structure

indicated that no large = 10—20 nm) protein aggregates were at low salt concentrations (i.e., thin protein aggregates that do
formed. At higher temperatures, there was an appreciablenot scatter light efficiently) to a particulate structure at high
increase in turbidity with increasing temperature, which was salt concentrations (i.e., relatively large protein aggregates that
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